
FizzBuzz from First Priciples

Guy Gastineau

January 2023

Abstract

Explore solving the classic fizz buzz test from first principles in Haskell’s type
system. This is a silly, cheeky article introducing type level natural numbers (in
a less efficient way than provided by base). We use DataKinds and TypeFamilies
for almost everything including ”printing”. Not only will you learn how to define a
very slow implementation of fizz buzz, but you will learn about the hidden, ghostly
REPL that hides within the bowels of ghci.

i

Contents

I Motivations 1

II Implementation 3
1 Shadow REPL or Printing During Compilation 3

2 Building the World 4
2.1 The Boolean Domain . 4
2.2 Computations that Might Fail . 5
2.3 A Natural Fugue . 5

2.3.1 Addition and Multiplication . 6
2.3.2 Subtraction . 6
2.3.3 Division and Modulus . 7

2.4 Building Intervals . 8

3 Playing the Game 8

Appendix A Boring Code 10
A.1 Equality and Ordering . 10
A.2 Writing Numbers . 10

III Bonus Program 12
4 Returning to the World of Values 12

ii

Part I
Motivations
Most programmers have heard of the fizz buzz test even if they haven’t had to
write a program for it in an interview. It is very simple, and still Wikipedia thinks
it has ”value in coding interviews to analyze fundamental coding habits that may
be indicative of overall coding ingenuity.” I remain deeply skeptical of this claim. I
thought its primary purpose was to identify candidates who simply can’t program
anything. Anyway, I suppose many engineers accidentally start from 0 or forget
that the interval should be closed [1, 100] (they only make it to 99) etc. Maybe this
shows us that we don’t pay enough attention when we think a task is too simple.
Anyway fizz buzz ought to be simple enough; here is a simple, value-level fizz buzz
in haskell:

import Control.Monad (forM_)
import Data.Maybe (fromMaybe)

mkSound ⹵⺽ Int -> String -> Int -> Maybe String
mkSound m sound n = if n `mod` m ㅅㅾ 0 then Just sound else Nothing
fizz, buzz ⹵⺽ Int -> Maybe String
fizz = mkSound 3 "Fizz"
buzz = mkSound 5 "Buzz"

appendMaybe ⹵⺽ Maybe String -> String -> Maybe String -> Maybe String
appendMaybe x _ Nothing = x
appendMaybe Nothing _ y = y
appendMaybe (Just x) sep (Just y) = Just (x ㋁㋂ sep ㋁㋂ y)

fizzBuzz ⹵⺽ IO ()
fizzBuzz = forM_ [1⹾⻆100] fb
where
fb = (putStrLn ∘) ∘ (fromMaybe ∘ show)
<Ⰿ> (flip appendMaybe " " ∘ fizz <Ⰿ> buzz)

If you are not already familiar with fizz buzz, then maybe I should explain. For
each number, n, in some interval, print ”Fizz” if n is divisible by 3, ”Buzz” if n is
divisible by 5, ”Fizz Buzz” if n is divisible by both 5 and 3 (ie. 15), or simply print
the number if it is divisible by neither. As a programming ”test”, it is typically on
the closed interval [1, 100]. Here is an example of output for the closed interval
[1, 15].

1
2
Fizz
4
Buzz
Fizz
7
8

1

https://en.wikipedia.org/wiki/Fizz_buzz#Programming

Fizz
Buzz
11
Fizz
13
14
Fizz Buzz

But that is boring and too easy. Aren’t we all tired of getting bogged down in the
details of a value level language? Wouldn’t it be better if we only worked with the
world of types? I think we all know the answer to these serious questions. Think
of all the problems this causes. We have to worry about performance in terms
of complexity analysis. Don’t write slow, naive algorithms. Don’t use too much
memory. Und so weiter... Well, we can completely avoid these issues by only using
the compiler and never producing an executable. It is precisely this lofty goal that
motivates me to torture myself and the world with this research.

2

Part II
Implementation
1 Shadow REPL or Printing During Compilation
How do we get started programming in haskell with no runtime costs? We first
need to set up the shadow REPL in ghci. We’ll need to import some entities from
GHC.TypeLits in order to set up our shadow REPL, and we will define a Print type
and finally a function1 to use from within ghci itself. We will have another inter-
esting hurdle. Our shadow REPL will only work if we can trick ghci into thinking
we have a real value. This is why our print function exists at the value level. If
GHC doesn’t think there is some value to evaluate, then we can’t get it to interpret
our types interactively. Therefore, we introduce this forgetful Proxy α type. don’t
worry, even though it looks like we are using values, I promise you we will crash
the compiler before any value can exist!

import GHC.TypeLits
(TypeError
, ErrorMessage (⹾⻆)
, Symbol
, AppendSymbol
)

data Proxy α = Proxy

type family Print α ⹵⺽ k where
Print α = TypeError ('ShowType α)

print ⹵⺽ forall α. Proxy (Print α)
print = Proxy ⹵⺽ Proxy (Print α)

The astute reader will realize that we are just making a custom type error that
displays some type according to ShowType. This is really all we need to get into
the shadow realms where GHC is an interpreted language with dynamic support.
Feel free to try it yourself, by loading the literate source of this paper into ghci and
using print with type applications. Here’s an example session:

TERM=dumb ghci FizzBuzz.lhs
GHCi, version 9.2.5: https:⺋⻓www.haskell.org/ghc/ ⹵⻕ for help
Loaded GHCi configuration from /home/<yourname>/.ghci
[1 of 1] Compiling FizzBuzz (FizzBuzz.lhs, interpreted)
Ok, one module loaded.
ghci> import Prelude (Int, Double, Char)
ghci> :set -XTypeApplications
ghci> :set -XDataKinds
ghci> print @'[Int, Double, Char]

1It is actually just a value with an unused type variable. It is a function in the sense that we can pass
it a type via the TypeApplications extension.

3

<interactive>⮹5:1: error:
• '[Int, Double, Char]
• When checking the inferred type

it ⹵⺽ forall {k}. Proxy (TypeError ⹚⺢⻪)
And there you have it! Our type was '[Int, Double, char], and that was displayed

for us in the interactive error. Who knew this could be so easy?

2 Building the World
Anyone who is anyone knows that dependencies are bad. Like really bad. Posts
on r/rust frequently thrash the language for using crates so freely. Don’t rus-
taceans know that dependency chain attacks ARE BAD?!? Haskell also suffers
from package fragmentation likely due to haskellers’ obsession with abstraction.
Didn’t anyone ever tell you abstraction is also bad? Don’t abstract! Pay attention
to these tedious details that arise from incidental knowledge! So, ahem, we will
avoid this problem by defining the world or, rather, all that we need of it.2

2.1 The Boolean Domain
We will be faced with some branching that is best suited to boolean logic. We will
thus give the Haskell definition for the boolean domain, {0,1}. Syntactic sugar for
a simple sum type will suffice.

data B = True | False
Then we need define the usual suspects ∧, ∨, If, and Not. Note well, If is strict

in both of its arguments, so it only works as control flow when both branches are
terminating. This makes it an especially shitty control flow operation.

type α ∧ β = And α β
infixl 3 ∧
type family And (α ⹵⺽ B) (β ⹵⺽ B) ⹵⺽ B where
And 'True 'True = 'True
And _ _ = 'False

type α ∨ β = Or α β
infixl 3 ∨
type family Or (α ⹵⺽ B) (β ⹵⺽ B) ⹵⺽ B where
Or 'True _ = 'True
Or _ 'True = 'True
Or _ _ = 'False

type family Not (p ⹵⺽ B) ⹵⺽ B where
Not 'True = 'False
Not 'False = 'True
2Importing a few entities from GHC.TypeLits remains necessary for our shadow REPL. I have tried

to avoid imports from base at all costs, but the world is an imperfect place

4

type family If (ρ ⹵⺽ B) (α ⹵⺽ k) (β ⹵⺽ k) ⹵⺽ k where
If 'True α _ = α
If 'False _ β = β

type family Unless (ρ ⹵⺽ B) (msg ⹵⺽ ErrorMessage) ⹵⺽ Constraint where
Unless 'True _ = ()
Unless 'False msg = TypeError msg

2.2 Computations that Might Fail
Just like humans, sometimes a computation fails in a way that doesn’t need to end
the world. To model this effect we may simply define a maybe type represent-
ing either a successful or a failed computation. We could pull its definition from
Data.Maybe, but why would we do anything so reckless as depending on standard
definitions from base? We will also need a way to get values out of Maybe. We
can do this by providing a default value as a fallback when the computation wasn’t
successful.
data Maybe α = Just α | Nothing

type family RunMaybe (def ⹵⺽ k) (val ⹵⺽ Maybe k) ⹵⺽ k where
RunMaybe def 'Nothing = def
RunMaybe _ ('Just val) = val
Now we may define an excellent helper that concatenates two Maybe Symbols

with a separator. Notice we only use the separator if both Symbols were a suc-
cessful computation. In the case that neither is a success, the result is a Nothing’.
type family AppendMaybeSymbol
(α ⹵⺽ Maybe Symbol)
(separator ⹵⺽ Symbol)
(β ⹵⺽ Maybe Symbol) ⹵⺽ Maybe Symbol where
AppendMaybeSymbol 'Nothing _ β = β
AppendMaybeSymbol α _ 'Nothing = α
AppendMaybeSymbol ('Just α) separator ('Just β) =
'Just (AppendSymbol (AppendSymbol α separator) β)

2.3 A Natural Fugue
To complete our world, or what we need from it, we still need some kind of num-
bers. Fizz buzz is, after all, all about numbers. Luckily, we only need non-negative
integrals, so the natural numbers should suffice. We will rely on induction for our
formalization of arithmetic. This recursive structure reminds me of that timeless
dance of voices chasing each other, theme-in-hand across an aural landscape sub-
lime in its simple complications. I suppose one might even call it piano arithmetic.3

data Nat = S Nat | Z
3Peano-arithmetic - This is the worst pun I have ever conceived, and I am so sorry, dear reader.

Moreover, while the Peano axioms involve induction, I think our approach is probably more similar to
Grassman’s, and I shouldn’t (probably) falsely attribute this to Peano. Also, don’t go look at pictures of
his beard. You really don’t want to look at it!

5

https://en.wikipedia.org/wiki/Hermann_Grassmann
https://en.wikipedia.org/wiki/Hermann_Grassmann

2.3.1 Addition and Multiplication

Well, that was simple enough, wasn’t it? Of course, but now we will need to de-
fine recursive operations for our algebra. Addition is particularly easy. We simply
recurse the left side until it is Zero.

n+m =


m if n = 0

n if m = 0

n′ + succ(m) where n = succ(n′)

(1)

We include both of the zero identities under addition, because this is Haskell not
Coq, and I don’t hate myself enough to try proving the commutativity of addition to
GHC. NB. infixl 5 + specifies that the+ operator is a left-associative, infix operator
with a precedence of 5.4 Multiplication is simply a summation series guarded by
case analysis

n×m =


0 if n = 0
n∑
1
m otherwise

(2)

acheived in Haskell using recursion and induction.

type n + m = Plus n m
infixl 5 +
type family Plus (n ⹵⺽ Nat) (m ⹵⺽ Nat) ⹵⺽ Nat where
Plus 'Z n = n
Plus n 'Z = n
Plus ('S n) m = Plus n ('S m)

type n × m = Mult n m
infixl 6 ×
type family Mult (n ⹵⺽ Nat) (m ⹵⺽ Nat) ⹵⺽ Nat where
Mult 'Z _ = 'Z
Mult _ 'Z = 'Z
Mult ('S 'Z) m = m
Mult ('S n) m = m + n × m

2.3.2 Subtraction

Subtraction is a little dirty. Domain analysis would show that some pairs of inputs
do not yeild valid elements of N, ie. if the domain of subtraction is N × N then the
range must be Z. Instead of taking the time to model Z in our program, we will
simply restrict the domain of subtraction such that the range is N.

n−m =


Underflow! if n < m

n if m = 0

n′ −m′ where n = succ(n′) and m = succ(m′)

(3)

4(Type level) function application has the highest precedence, so our operator will interfere with the
application of neither constructors nor type families. Precedence for multiplication and division are
higher as is customary, and logical operations and comparisons on natrual numbers will have lower
precedence to allow for the most natural mixing of numbers in propositions.

6

We accomplish this simply by crashing on invalid inputs with a Subtraction under-
flow! message to the user in the shadow REPL when n is less than k.

type n - m = Subt n m
infixl 5 -
type family Subt (n ⹵⺽ Nat) (m ⹵⺽ Nat) ⹵⺽ Nat where
Subt n 'Z = n
Subt 'Z m = TypeError ('Text "Subtraction underflow!")
Subt ('S n) ('S m) = Subt n m

2.3.3 Division and Modulus

The range of division is obviously ⊃ N for all but the most restrictive subsets of
N×N. Furthermore, we must account for attempted division by zero. We side-step
the range/codomain issue by returning a product of the quotient and remainder.
I believe this is the Euclidean remainder, but I am too lazy to check that right
now. So, the range of our division function is the cartesian product N × N. We
define a generic product, and alias its accessors for semantic clarity as Quotient
and Remainder. To handle division by zero, we send the user a message in a fash-
ion similar to our subtraction underflow error above. Division as the product of
quotient and remainder also makes an implementation of modulo and a divides
predicate trivial. Our division function also requires keeping track of its recursion
stack. It5 is, after all, an identity for the quotient.

div(quo, n,m) =


DivideByZero! if m = 0

(quo, 0) if n = 0

div(succ(quo), n−m,m) if n ≥ m

(quo, n) otherwise

(4)

data Prod α β = Prod α β

type family Fst (αβ ⹵⺽ Prod α β) ⹵⺽ α where
Fst ('Prod α _) = α

type family Snd (αβ ⹵⺽ Prod α β) ⹵⺽ β where
Snd ('Prod _ β) = β

type Quotient αβ = Fst αβ
type Remainder αβ = Snd αβ

type n ÷ m = Divi Zero n m
infixl 6 ÷
type family Divi
(quotient ⹵⺽ Nat)
(n ⹵⺽ Nat)
(m ⹵⺽ Nat) ⹵⺽ Prod Nat Nat where
Divi _ _ 'Z = TypeError ('Text "Divide by zero!")
Divi quo 'Z _ = 'Prod quo 'Z
Divi quo n m =
5the recursion stack/counter

7

If (n ⽤⽪ m) (Divi ('S quo) (n - m) m)
('Prod quo n)

type Divides denom numer = Modulo numer denom ㅅㅾ Zero

type n % m = Modulo n m
type family Modulo (n ⹵⺽ Nat) (m ⹵⺽ Nat) ⹵⺽ Nat where
Modulo n m = Remainder (n ÷ m)

2.4 Building Intervals
Back to something less intimidating ... We can produce closed intervals on the
natural numbers now as lists, and we can pass those to some FizzBuzz function. I
haven’t figured out how to relieve the invariant n <= k. When n > k, Interval loops
endlessly, but I would prefer giving an empty list instead. I tried using If, but it
suffered the same issue. Well, this is the price we pay for using such a dangerous
language with so many footguns.

{- INVARIANT! `n < k` -}
type n ⹚⺢⻪ m = Interval n m
infix 4 ⹚⺢⻪
type family Interval (n ⹵⺽ Nat) (k ⹵⺽ Nat) ⹵⺽ [Nat] where
Interval n n = '[n]
Interval n k = n ': Interval ('S n) k

3 Playing the Game
In order to satisfy the rules of fizz buzz we need the ability to print natural numbers
that are neither divisible by 3 nor 5. We are only concerned with 3-digit numbers,
since the canonical fizz buzz test for programmers works on the interval (1, 100).
We need to extract the digits from a number, and we may simply convert these
digits to Symbols and concatenate them. 6

type OnesPlace n = Remainder (n ÷ Ten)
type TensPlace n = Quotient (Remainder (n ÷ Hundred) ÷ Ten)
type HundredsPlace n = Quotient (n ÷ Hundred)

type family ToSymbol (n ⹵⺽ Nat) ⹵⺽ Symbol where
ToSymbol n =
AppendSymbol
(AppendSymbol
(If (n ⽤⽪ Hundred) (Digit (HundredsPlace n)) "")
(If (n ⽤⽪ Ten) (Digit (TensPlace n)) ""))
(Digit (OnesPlace n))

Finally we can define a function that vocalizes a natural number according to
the rules of our fizz buzz game. Recursive application on kind [Nat] results in a
type level list of kind Symbol, that may be printed in the shadow REPL.

6For definitions of the number aliases and Digit see Appendix A

8

type family Sound (n ⹵⺽ Nat) ⹵⺽ Maybe Symbol where
Sound n = AppendMaybeSymbol

(If (Divides Three n) ('Just "Fizz") 'Nothing)
" "
(If (Divides Five n) ('Just "Buzz") 'Nothing)

type family FizzBuzz (ns ⹵⺽ [Nat]) ⹵⺽ [Symbol] where
FizzBuzz '[] = '[]
FizzBuzz (n ': ns) =
RunMaybe (ToSymbol n) (Sound n) ': FizzBuzz ns
And now wemay use our work to play fizz buzz in the GHCI interactive terminal.

Remember, we are using the shadow REPL, so our resultant value will belong to the
first bullet item in an interactive error. As promised, there are no values, there are
only types and a compiler crash. Feel free to try other intervals. Just remember,
we have made this very inefficient, so make some tea or something if you want to
go big.

TERM=dumb ghci FizzBuzz.lhs
GHCi, version 9.2.5: https:⺋⻓www.haskell.org/ghc/ ⹵⻕ for help
Loaded GHCi configuration from /home/<yourname>/.ghci
[1 of 1] Compiling FizzBuzz (FizzBuzz.lhs, interpreted)
Ok, one module loaded.
ghci> :set -XTypeApplications
ghci> :set -XDataKinds
ghci> print @(FizzBuzz (Five × Three ⹚⺢⻪ Five × Five))

<interactive>⮹3:1: error:
• '["Fizz Buzz", "16", "17", "Fizz", "19", "Buzz", "Fizz", "22",

"23", "Fizz", "Buzz"]
• When checking the inferred type

it ⹵⺽ forall {k}. Proxy (TypeError ⹚⺢⻪)

9

Appendix A Boring Code
A.1 Equality and Ordering
From one base definition, for less than or equal to, we can derive the rest of a total
ordering on the natural numbers. This was too boring to jam into the prose of the
rest of the paper.

type n ⽣⽩ k = LE n k
infix 4 ⽣⽩
type family LE (n ⹵⺽ Nat) (k ⹵⺽ Nat) ⹵⺽ B where
LE 'Z _ = 'True
LE ('S _) 'Z = 'False
LE ('S n) ('S k) = LE n k

type n ⽤⽪ k = k ⽣⽩ n
infix 4 ⽤⽪

type n ㅅㅾ k = n ⽣⽩ k ∧ k ⽣⽩ n
infix 4 ㅅㅾ

type n < k = Not (n ⽤⽪ k)
infix 4 <
type n > k = Not (n ⽣⽩ k)
infix 4 >

A.2 Writing Numbers
As a practical matter, we define aliases for the first ten natural numbers and a
type family to convert naturals to symbols. We only need to handle up to the first
101 natural numbers. Our implementation can print the first 1,000, but we don’t
have infinite time to wait for the compiler. We certainly don’t have time to work
with even larger numbers, sheesh. Anyway, writing our Peano-encoded numbers
is such a chore that we will resort to aliases and arithmetic. For example, Five ×
Five is much more succint than S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
(S (S (S (S (S (S (S (S Z)))))))))))))))))))))))).

type Zero = 'Z
type One = 'S Zero
type Two = 'S One
type Three = 'S Two
type Four = 'S Three
type Five = 'S Four
type Six = 'S Five
type Seven = 'S Six
type Eight = 'S Seven
type Nine = 'S Eight

type family Digit (n ⹵⺽ Nat) ⹵⺽ Symbol where
Digit Zero = "0"

10

Digit One = "1"
Digit Two = "2"
Digit Three = "3"
Digit Four = "4"
Digit Five = "5"
Digit Six = "6"
Digit Seven = "7"
Digit Eight = "8"
Digit Nine = "9"

type Ten = Two × Five
type Hundred = Ten × Ten

11

Part III
Bonus Program
4 Returning to the World of Values
I know I said we would ignore the world of values, and we have mostly done just
that; however, it is maybe useful to come back down to earth. Now that we can
compute our fizz buzz at compile time, we might as well try to turn the result
into a real program7. In order to make this program more efficient than other
implementations of value level fizzbuzz we should tell GHC to inline our function
calls aggressively. Hopefully we can get it to spit out a really optimized function
that just inlines all the printing calls. This is a similar kind of optimization wemight
expect to see from some unrolled loops generated by LLVM for Rust or CPP. To do
this we will need a typeclass for printing lists of symbols.

class PrintLn (n ⹵⺽ [Symbol]) where
printLn ⹵⺽ IO ()

instance PrintLn '[] where
printLn = return ()

instance (KnownSymbol n, PrintLn ns) ㄿ㈜ PrintLn (n ': ns) where
{-# INLINE printLn #-}
printLn = Prelude.putStrLn (symbolVal (Proxy @n)) ㈣㈥ printLn @ns

main ⹵⺽ IO ()
main = printLn @(FizzBuzz (One ⹚⺢⻪ Hundred))

7Ewe, grouse!

12

	I Motivations
	II Implementation
	Shadow REPL or Printing During Compilation
	Building the World
	The Boolean Domain
	Computations that Might Fail
	A Natural Fugue
	Addition and Multiplication
	Subtraction
	Division and Modulus

	Building Intervals

	Playing the Game
	Appendix Boring Code
	Equality and Ordering
	Writing Numbers

	III Bonus Program
	Returning to the World of Values

